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• Industry wide NDI Reference Standards

– Complete (SAE ARP5506 & 5507; DOE report distributed 

in June 2004)

• NDI Assessment: Honeycomb Structures

– Experiments completed in early 2007

– DOT report in progress

• NDI Assessment: Solid Laminate Structures

– In process (specimen fabrication completed; exp. 

protocols & final implementation planning remains)

• Miscellaneous Ongoing and Planned Studies

– Detection and quantification of weak bonds

– Affect of porosity, repairs & other impediments on NDI

– As required to support main tasks

– Can be initiated to support other task groups

CACRC Inspection Task Group ActivitiesCACRC Inspection Task Group Activities
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Composite Inspections & 

Reference Standards

Composite Inspections & 

Reference Standards

• Industry-wide composite reference standards 
developed to support damage assessment & 
inspection 

• SAE Aerospace Recommended Practices (ARP 5605 
& 5606)  - adopted into Boeing and Airbus NDT 
Manuals

• Improve inspections of composite structures via 
introduction of advanced NDI methods

• Provides consistent approach to composite 
inspections - harmonized approach by OEMs 
worldwide

Optimized NDT 

Reference Standards

Composite Structures on Boeing 787 Aircraft
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Goals of Composite Honeycomb

Flaw Detection Experiments

Goals of Composite Honeycomb

Flaw Detection Experiments

1) how well current inspection techniques are able to 
reliably find flaws in composite structures

2) the degree of improvements possible through the 
integration of more advanced NDI techniques and 
procedures.

Utilize airline inspectors to establish industry-wide 
performance curves that quantify: 

• Statistically relevant and realistic flaw profiles

• Blind application of techniques to study hits, misses, 

false calls, and flaw sizing
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Tap Testing at Maintenance DepotsTap Testing at Maintenance Depots
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Boeing Manual Tap HammerAirbus Manual Tap Hammer

S-9 Sondicator (LFBT)V-95 Mechanical Impedance Analysis

Conventional NDI Devices
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Wichitech Digital Tap Hammer

Mitsui Woodpecker with
Digital Readout

Automated Tap Test Devices

CATT Instrumented

Tap Test System
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CATT Results on 6 Ply Fiberglass
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Thermography

MAUS

System

SAM System

Shearography

Wide Area and C-Scan Inspection MethodsWide Area and C-Scan Inspection Methods

PE Phased Array UT 

UT Wheel Array

UltraImage Scanner
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MAUS 

Image

Shearography 

(LTI) Image

Ultrasonic Wheel Array

SAM Image

Thermography 

(TWI) Image
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Implementation of Honeycomb 

Flaw Detection Experiment

Implementation of Honeycomb 

Flaw Detection Experiment
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Airlines, 3rd Party Maintenance and Adv. 

NDI Organizations Who Have Participated

Airlines, 3rd Party Maintenance and Adv. 

NDI Organizations Who Have Participated

Laser UT (Lock.-Martin)

Computer Aided Tap Tester (ISU)

Microwave Scanner (Evisive)

Thermography (TWI - 2)

Laminography (Digiray)

Shearography (LTI)

Air Coupled UT  (ISU)

Structural Anomaly Mapping (Honeywell)

MAUS MIA & Resonance Scanner (Boeing)

Digital Radiography (Digiray)

Phased Array Ultrasonics (NDT Sol’ns)

Acoustography (Imperium)

Terahertz (GMA)
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Cumulative PoD - Woodpecker for All Panel Types
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Performance of Single Device (Woodpecker)
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Performance of Multiple Devices for

A Single Type of Test Specimen

Performance of Multiple Devices for

A Single Type of Test Specimen

Cumulative PoD of All Conventional NDI Devices for 3 Ply Fiberglass

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3

Flaw Size (Dia. in Inches)

P
ro
b
a
b
il
it
y
 o
f 
D
e
te
c
ti
o
n

Airbus Tap Hammer Boeing Tap Hammer LFBT MIA Wichitech DTH Woodpecker



FAA Hughes Technical Center

Conclusions – Composite Honeycomb NDIConclusions – Composite Honeycomb NDI

� 90% POD is not achieved for 1” dia. flaws; at 9 plies it exceeds 2” dia.

�Human factors issues (time, attention to detail, proper deployment)

�Some inspectors marked grids on panel to aid in coverage of inspection 

area – most inspectors had good coverage; some followed random 

pattern (find small flaws but miss large ones)

�Overall, MIA mode worked well (reliability, repeatability, ease of use)

How are we doing? – Flaw Detection with Conventional NDI

� Improvement in flaw detection ranged from 66% to 72%

� Automated deployment & data presentation/analysis reduces many 

human factors concerns (100% coverage; flaw recognition on images)

� Allow for more rapid inspections

� MAUS, Thermography (sizing), Shearography all performed well

How can advanced NDI help? – Flaw Detection with More Sophisticated NDI
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Purpose

• Determine in-service flaw detection capabilities: 1) conventional  NDT 

methods vs. 2) improvements through use of advanced NDT. 

• Optimize laminate inspection procedures.

• Compare results from hand-held devices with results from scanning 

systems (focus on A-scan vs. C-scan and human factors issues in 

large area coverage).

• Provide additional information on laminate inspections for the 

“Composite Repair NDT/NDI Handbook” (ARP 5089).

An Experiment to Assess Flaw Detection 

Performance in Composite Laminate Structures

An Experiment to Assess Flaw Detection 

Performance in Composite Laminate Structures

A380 Section 19

737 Composite Horiz. Stabilizer
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Specimen Set - Flaw Detection in 

Solid Laminate Composites

Specimen Set - Flaw Detection in 

Solid Laminate Composites

Thickness Range:

12 – 64 plies
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Thick Laminate With Simple TaperThick Laminate With Simple Taper

Type 2 Specimen
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Composite Laminate FabricationComposite Laminate Fabrication
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Contoured Test Panel with HoneycombContoured Test Panel with Honeycomb

18.00" 

2.00" 

6.00" 

15.00" 

20 PLIES
(OR AS RECEIVED

PRE-MANUFACTURED
PARTS)
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FLAWS TO BE LOCATED IN
SEPARATION REGIONS (4X)
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Contoured Test Panel - FabricationContoured Test Panel - Fabrication

Flaws in Aft Spar

Concentric FBH to 

Simulate Impact Damage
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• Surface area & no. of flaws req’d (no. of specimens) 

vs. time for inspector to complete experiment

� Trial inspections on simulated stabilizer by UA 

inspectors – 2.9 to 3.9 ft.2 per hour

Experiment Design & ImplementationExperiment Design & Implementation

Simulated Vertical Stabilizer with Stringers, Rib Sections and Engineered Flaws

Three stringer-to-skin disbonds (yellow)

Two rib to-skin-partial disbonds (blue)
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Phased Array UT Inspection of Vertical Stabilizer Specimen

United Airlines 

inspection with hand-

held P-E UT

MAUS – Resonance Mode
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• Process control alone may not ensure satisfactory bond 

strength

• Must consider joint degradation - environmental effects of 

moisture, aging, stress, fatigue

• Method must be a stiffness-based technique and/or able to 

assess material properties 

• Wave transmission modes may be sensitive to in-plane 

displacements (interfacial changes)

• Requires high sensitivity (S/N) and possibly noise reduction 

methods to recognize small changes in bonds

Enhanced Inspection Methods to

Characterize Bonded Joints:

Moving Beyond Flaw Detection to

Quantify Adhesive Strength

Enhanced Inspection Methods to

Characterize Bonded Joints:

Moving Beyond Flaw Detection to

Quantify Adhesive Strength
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Adhesive vs. Cohesive FailureAdhesive vs. Cohesive Failure

Cohesive Fracture of Adhesive Film
(Option 6 silane treatment)

Adhesive Failure at Interface
(Option 4 no chemical treatment)
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Angle Beam Ultrasonic Spectroscopy (ABUS)Angle Beam Ultrasonic Spectroscopy (ABUS)

• Compare received and transmitted waveforms in frequency domain; study 

frequency/amplitude shifts & change in damping in FRF

• Oblique wave (broadband UT beam) introduces shear stress in the bond 

line

• Difference between longitudinal wave and shear wave interrogation
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Nonlinear UltrasonicsNonlinear Ultrasonics

• Exploit contact nonlinearity in imperfect bonds

• Swept frequency or chaotic drive signals to generate unique 

harmonics

• Potential for introducing damage because incident energy levels 

must be high

Requires high fidelity to avoid missed/false calls -

signal changes may be small (low S/N)

Good Bond
Weak Bond
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AANC Weak Bond Specimen ProductionAANC Weak Bond Specimen Production

•Screened mold release

•Diluted mold release

•Poor cure
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TTU of Weak Bond Specimens Show TrendsTTU of Weak Bond Specimens Show Trends
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Conclusions on Weak Bond AssessmentsConclusions on Weak Bond Assessments

• Understanding physics of bond integrity is key – select 

proper interrogation method (what do we exploit)

• One NDI method may not detect all sources of weak 

bonds

• Several NDI techniques show promise

• Expected low signal-to-noise ratios provide the biggest 

impediment; optimized excitation is important  . . . .

• Ensure that inspection is truly nondestructive
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QMI

Sonda-007CX 

Airscan

T

R

Air Coupled UltrasonicsAir Coupled Ultrasonics

Backside 1

Backside 2

Backside 3

Backside 1

Backside 2

Backside 3

Pixel resolution of 0.1”
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• Works by bathing the material in 

microwave energy of an 

essentially constant frequency 

• The energy is reflected from each 

interface of differing dielectric 

constants within the specimen 

• The reflected energy is 

superimposed, creating a signal 

that is acquired as an analog 

voltage which is digitized

• This signal is sampled at 

numerous discrete locations 

across the sample to create a 2-D 

image 

Microwave Scanning (Evisive)Microwave Scanning (Evisive)

Automated scan table

Fiberglass Honeycomb Test Specimen
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Microwave NDI Results for 3 Ply 

Fiberglass Panel

Microwave NDI Results for 3 Ply 

Fiberglass Panel

Some difficulty with 

carbon skin inspections
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• Sample surface is heated with a 

pulse of electromagnetic 

radiation from a flash lamp 

• Heat from the surface diffuses 

into the sample and is obstructed 

by the presence of a subsurface 

defect

• The accumulated heat energy at 

the defect causes a transient 

nonuniformity in the infrared 

radiation 

Flir A40 Uncooled IR Camera

Pulsed ThermographyPulsed Thermography
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Pulsed Thermography Inspection 

Results for 6 Ply Panels

Pulsed Thermography Inspection 

Results for 6 Ply Panels
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Disbond Detection & Growth Monitoring

with Piezoelectric Sensors

Disbond Detection & Growth Monitoring

with Piezoelectric Sensors
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Disbond Detection & Growth Monitoring

with Piezoelectric Sensors

Disbond Detection & Growth Monitoring

with Piezoelectric Sensors

Pull tab flawAfter mold release flaw growth
(50 KHz inspection)
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